All Scientists are Sceptics ~Professor Bob Carter

Whenever someone asserts that a scientific question is “settled,” they tell me immediately that they don’t understand the first thing about science. Science is never settled. Dr David Deming

Perhaps the most frustrating aspect of the science of climate change is the lack of any real substance in attempts to justify the hypothesis ~Professor Stewart Franks

A lie told often enough becomes the truth.
-- Vladimir Ilyich Lenin - See more at: http://thepeoplescube.com/lenin/lenin-s-own-20-monster-quotes-t185.html#sthash.aTrSI3tG.dpuf
A lie told often enough becomes the truth.
-- Vladimir Ilyich Lenin - See more at: http://thepeoplescube.com/lenin/lenin-s-own-20-monster-quotes-t185.html#sthash.aTrSI3tG.dpuf
A lie told often enough becomes the truth.
-- Vladimir Ilyich Lenin - See more at: http://thepeoplescube.com/lenin/lenin-s-own-20-monster-quotes-t185.html#sthash.aTrSI3tG.dpuf

Wednesday, 9 October 2013

Climate Models may be detrimental - IPCC be warned.

The American Meteorological Society in their Journal of Climate 26 Issue 12 have published a paper

Evaluation of Temperature and Precipitation Trends and Long-Term Persistence in CMIP5 Twentieth-Century Climate Simulations

The authors have analyzed twentieth-century temperature and precipitation trends and long-term persistence from 19 climate models participating in phase 5 of the Coupled Model Intercomparison Project (CMIP5). This study is focused on continental areas (60°S–60°N) during 1930–2004 to ensure higher reliability in the observations. A nonparametric trend detection method is employed, and long-term persistence is quantified using the Hurst coefficient, taken from the hydrology literature.
From CO2 Science: (link)

What was learned

Although some things were done well by the participating models, others were not. Kumar et al. report, for example, that "the models capture the long-term persistence in temperature reasonably well," but they say that "the models have limited capability to capture the long-term persistence in precipitation." They also state that "most climate models underestimate the spatial variability in temperature trends," and they say there were "large uncertainties in the simulation of regional-/local-scale temperature and precipitation trends." In addition, they report that "Sakaguchi et al. (2012a,b) have evaluated the simulation skill for temperature trends from selected CMIP3 and CMIP5 climate models," finding "limited skill in the simulation of temperature trends at regional scales in these climate models."

Finally, "from a regional natural resource planning perspective," the four scientists write that the multimodel-ensemble averages provide what they kindly call "conservative value for planning or design." As an example, they note that "the India and West Africa regions are drying much faster (-20 mm/decade) in the observations than simulations by the multimodel-ensemble average (-5 mm/decade)," while similarly noting that "north-central Asia is warming twice as fast as the global-average warming," which is something "not found in the multimodel-ensemble average."

What it means

Clearly, the best climate models of the present day are still not up to doing what we really need them to do to be of much service. In fact, they could potentially be leading us in a direction we may soon find to actually be detrimental to the well-being of the biosphere, including ourselves. (emphasis added)

Read More at CO2 Science

No comments:

Post a Comment





All serious comments published after moderation.
Comments should be polite, and respect all views.
No bad language. Spam never makes it!