All Scientists are Sceptics ~Professor Bob Carter

Whenever someone asserts that a scientific question is “settled,” they tell me immediately that they don’t understand the first thing about science. Science is never settled. Dr David Deming

Perhaps the most frustrating aspect of the science of climate change is the lack of any real substance in attempts to justify the hypothesis ~Professor Stewart Franks

A lie told often enough becomes the truth.
-- Vladimir Ilyich Lenin - See more at: http://thepeoplescube.com/lenin/lenin-s-own-20-monster-quotes-t185.html#sthash.aTrSI3tG.dpuf
A lie told often enough becomes the truth.
-- Vladimir Ilyich Lenin - See more at: http://thepeoplescube.com/lenin/lenin-s-own-20-monster-quotes-t185.html#sthash.aTrSI3tG.dpuf
A lie told often enough becomes the truth.
-- Vladimir Ilyich Lenin - See more at: http://thepeoplescube.com/lenin/lenin-s-own-20-monster-quotes-t185.html#sthash.aTrSI3tG.dpuf

Wednesday, 6 March 2013

Sea anenomes to thrive in a High-CO2 world of the future

Anenome viridis
Image:  © Faunamelitensis
The peer review journal Global Change Biology published a paper by Suggett et al titled: "Sea anemones may thrive in a high CO2 world." (link for abstract.) From CO2 Science

Our observations of enhanced productivity with pCO2, which are consistent with previous reports for some calcifying corals, convey an increase in fitness that may enable non-calcifying anthozoans to thrive in future environments, i.e. higher seawater pCO2. Understanding how CO2-enhanced productivity of non- (and less-) calcifying anthozoans applies more widely to tropical ecosystems is a priority where such organisms can dominate benthic ecosystems, in particular following localized anthropogenic stress.

From CO2 Science (link)

BackgroundThe authors write that "non-calcifying anthozoans such as soft corals and anemones, play important ecological and biogeochemical roles in reef environments (e.g. Fitt et al., 1982; Bak and Borsboom, 1984; Muller-Parker and Davy, 2001)," and as with reef-forming scleractinian corals, they note that in order to supplement their nutritional requirements, "many anemones harbor symbiotic algae (Symbiodinium spp.)." Yet in spite of these significant similarities, they indicate that little is known about how these organisms would respond to a future acidification of the world's oceans. 
What was doneFocusing on this particular dearth of information, Suggett et al. collected pertinent data from the 11th to the 26th of May 2011 on a sea anemone (Anemonia viridis) along a natural seawater pH gradient of 8.2-7.6 - such as would be expected to prevail across an atmospheric CO2 gradient of 365-1425 ppm - which was produced by a shallow cold vent system (Johnson et al., 2011, 2012) that released CO2 to coastal waters near Vulcano, Italy, about 25 km northeast of Sicily. 
What it meansSuggett et al. say that the enhanced productivity they observed in the sea anemones they studied implies "an increase in fitness that may enable non-calcifying anthozoans to thrive in future environments, i.e. higher seawater CO2." And, therefore, they declare in the title of their paper that "Sea anemones may thrive in a high CO2 world."
Read more at CO2 Science.

No comments:

Post a Comment





All serious comments published after moderation.
Comments should be polite, and respect all views.
No bad language. Spam never makes it!